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Background (modeling and assimilation 
environment – NASA Land Information System 
(LIS); evaluation environment – NASA Land 
surface Verification Toolkit (LVT)) 

Soil moisture data assimilation - methods 

Soil moisture data assimilation for drought 
applications in the NLDAS system  

Soil moisture OSSEs conducted in support of 
SMAP 

Outline 



A system to study land surface 
processes and land-
atmosphere interactions 

Background: Land Information System (LIS) 

Integrates satellite- and ground-
based observational data 
products with land surface 
modeling techniques 

Capable of modeling at different 
spatial scales 

A comprehensive, sequential data assimilation subsystem based 
on NASA (Global Modeling and Assimilation Office) GMAO 
infrastructure for improved state estimation using remote 
sensing observations 

http://lis.gsfc.nasa.gov (Kumar et al. Environmental Modeling and Software, 2006) 

http://lis.gsfc.nasa.gov
http://lis.gsfc.nasa.gov


Land surface Verification Toolkit (LVT) 

LVT is a framework developed to provide an automated, consolidated environment for 
systematic land surface model evaluation 

Includes support for a range of in-situ, remote-sensing and other model and reanalysis 
products.  

Metric Class Examples 

Accuracy metrics RMSE, Bias, Correlation 

Ensemble metrics Mean, Standard deviation, Likelihood 

Uncertainty metrics Uncertainty importance 

Information theory 

metrics 

Entropy, Complexity 

Data assimilation 

metrics 

Mean, variance, lag correlations of 

innovation distributions 

Spatial similarity 

metrics 

Hausdorff distance 

Scale decomposition 

metrics 

Discrete wavelet transforms 

http://lis.gsfc.nasa.gov (Kumar et al. Geophysical Model Development, 2012) 

http://lis.gsfc.nasa.gov
http://lis.gsfc.nasa.gov
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Soil moisture Data Assimilation 

Soil moisture retrievals are available from low-frequency (C, X, and L-band) active and passive microwave 
data (SMMR, TMI, AMSR-E, WindSat, SMOS, SMAP, …) 

Several studies in the past decade that has demonstrated utility from assimilating passive microwave 
retrievals of soil moisture (Drusch et al. (2005), Reichle et al. (2007), Liu et al. (2011), Draper et al. (2012), 
Peters-Lidar et al. (2012) to name a few).  
 

Essential Climate Variable (ECV) soil moisture product (Liu et al. 2012, Wagner et al. 2012) from 
ESA; uses C-band scatterometers (ERS-1/2 scatterometer, METOP advanced scatterometer) and 
multi-frequency radiometers (SMMR, SSM/I, TMI, AMSR-E, Windsat) spans 1978 to 2011. 
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Soil moisture Data Assimilation 

 880 

Figure 3.  Average time series correlation coefficient R with SCAN in situ surface and root zone 881 

soil moisture anomalies for estimates from two AMSR-E retrieval datasets (NSIDC and LPRM), 882 

the Catchment model forced with four different precipitation datasets (MERRA, CMAP, GPCP, 883 

and CPC), and the corresponding data assimilation integrations (DA/NSIDC and DA/LPRM).  884 

Average is based on 37 SCAN sites for surface and 35 SCAN sites for root zone soil moisture 885 

(Table 3). Error bars indicate approximate 95% confidence intervals.  886 

Assimilation of AMSR-E retrievals into 
Catchment LSM (Liu et al. 2011) 

Data flagged for light and moderate 
vegetation, no precipitation, no snow 
cover, no frozen ground, no RFI are 
used in data assimilation.  
 
The observations are scaled to the 
LSM’s climatology using CDF 
matching  

Commonly used Assimilation algorithm : Ensemble Kaman Filter (EnKF) 

Update at        : 

 

 

for each ensemble member i=1…N 

 

 

 



  Soil moisture DA in the NLDAS system  

Model domain: Continental United States (CONUS) at 1/8th degree spatial resolution, including parts of 
Canada/Mexico (25-53° N; 125-67° W) 
 
Forcing data: NLDAS-phase II (NLDAS2) 
 meteorological forcing data. 
Hourly precipitation includes CPC’s daily PRISM 
Corrected gauge analysis, downward shortwave radiation 
 bias-corrected using GOES SRB shortwave data, all other 
 fields derived from the NCEP North American Regional  
Reanalysis (NARR) data. 
 
Land surface model: Noah LSM version 3.3, includes a 15-year spin-up, followed by a 33 
 
Data assimilation method: Ensemble Kalman Filter (EnKF) 
 
Time period: Jan 1, 1979 to 1 Jan 2012.  

Soil moisture: 

USDA Soil Climate Analysis Network (SCAN); 123 stations chosen after 
careful quality control (used for evaluations between 2000-2011)  

Four USDA ARS experimental watersheds (“CalVal” sites) (used for 
evaluations between 2001-2011) 

Streamflow: Gauge measurements from unregulated USGS streamflow 
stations (1981-201) 



  
Soil moisture DA: 

evaluation of soil moisture fields 

Statistically significant 
improvements in surface soil 
moisture and root zone soil 
moisture as a result of soil 
moisture DA 
 
Anomaly R increases, Anomaly 
RMSE reduces and unbiased 
RMSE reduces with soil 
moisture assimilation.  

ARS CalVal  
(surface soil 
moisture) 

Open loop (no 
DA) 

LPRM DA  

Anomaly R 0.84 +/- 0.02 0.86 +/- 0.02 

Anomaly RMSE (m3/m3) 0.021 +/- 0.001 0.019 +/- 0.001 

ubRMSE (m3/m3) 0.024 +/- 0.002 0.022 +/- 0.002 

SCAN (surface  
soil moisture) 

Open loop (no 
DA) 

LPRM DA 

Anomaly R 0.67 +/- 0.02 0.67 +/- 0.02 

Anomaly RMSE (m3/m3) 0.037+/- 0.002 0.036 +/- 0.002 

ubRMSE (m3/m3) 0.043 +/- 0.003 0.041 +/- 0.003 

SCAN (root zone 
 soil moisture) 

Open loop (no 
DA) 

LPRM DA 

Anomaly R 0.60 +/- 0.02 0.59 +/- 0.02 

Anomaly RMSE (m3/m3) 0.032 +/- 0.002 0.030 +/- 0.002 

ubRMSE (m3/m3) 0.041 +/- 0.003 0.039 +/- 0.003 



  
Soil moisture DA:  

Evaluation of streamflow 

NIC_R 

NIC_NSE 

The improvements are expressed using 
an Normalized Information 
Contribution (NIC) metric that 
measures the  skill improvement from 
DA as a fraction of the maximum 
possible skill improvement 
 
 
 
 
 
 
 
 
 

Overall improvements in all skill metrics (RMSE, R 
and NSE) are observed in streamflow  estimates after 
data assimilation 
 
Skill improvements from soil moisture assimilation are 
mostly over parts of the Mississippi, Missouri and 
Arkansas-Red basins and parts of Southeastern U.S.  

NIC_RMSE 



OL  (no-DA) DA-SM USDM 
July 18-25, 2006 

June 17-24, 2008 

May 10-17, 2011 

July 18-25, 2006: DA improves estimates over Texas, Nebraska, Dakotas (D0 and D1) 
June 17-24, 2008: DA indicates more intense drought over North Dakota and Montana, 

reduces severity over Nevada, increases spatial extent over Texas and New Mexico.  
May 10-17, 2011: DA predicts increased severity of drought over Texas and Oklahoma  

Comparison of drought estimates based on root zone soil moisture percentiles 



South 
(Noah) 

R OL DA-

SM 

D0 0.91 0.90 

D1 0.91 0.89 

D2 0.89 0.89 

D3 0.78 0.80 

D4 0.73 0.73 

RMS

E 

OL DA-

SM 

D0 15.7 12.8 

D1 11.1 11.1 

D2 9.9 9.2 

D3 9.0 8.5 

D4 6.7 6.7 

Bias OL DA-

SM 

D0 11.2 5.0 

D1 4.7 -0.1 

D2 3.8 1.2 

D3 0.5 -0.7 

D4 -0.4 -0.8 

Comparison of area under drought 



Soil moisture OSSE in support of SMAP 

Nature Run

LIS-LSM http://lis .gsfc .nasa.gov

25km 

1km 

High-resolution (enabled by LIS): 

-Demonstrate impact of EOS-era 

observations (e.g., MODIS)  

Traditional resolution (before LIS): 

-Overpredict magnitude of heat 

island (nonlinear averaging) 

  

Design 

Characteristics

(e.g. local overpass time, 
frequency)

System Simulation

LIS-DA

LVT

OSSE Metrics

Noah+ MERRA 
forcing (open loop) 

LIS-DA  
LIS-RTM 

How much improvements in the drought/flood risk 
assessments are obtained?  

How do these improvements translate to associated 
cost reductions?  

H-pol 

V-pol 
Mosaic + 

NLDAS2 forcing  

LIS-RTM  
(CMEM) 

Masking for dense 
vegetation 

 rain/snow events 
1.3 K gaussian noise  

1 observation per day 

H-pol 

V-pol 

Simulation Domain: Continental U.S.,  
35KM Spatial resolution 
Time period: 1980-2012.  

impact of having L-band 
brightness temperature 

observations for improving the 
representation of drought/flood 

events  



Improvements in soil moisture fields from DA 

Surface soil moisture 

 
Maps present Anomaly R (DA) – Anomaly R (OL) of 

surface and root zone soil moisture.  
 

Blue (positive values) indicate improvements 
Red (negative values) indicate degradations 

Root zone soil moisture 

Assimilation of L-band Tb provides 
improvements to both surface and root zone soil 

moisture fields.  
 



Comparison of percentile maps 

Aug 1989 

Jul 2003 

May 2011 

Nature run (“Truth”) Open loop (No DA) DA run  

The assimilation of L-band Tb observations aid in improving the representation of drought estimates  
• Aug 1989 case: DA correctly intensifies the drought over the Midwest 
• July 2003 case: DA reduces the severity of drought over the Highplains (that was incorrectly specified in the open 

loop run) 
• May 2011 : DA correctly intensifies the drought over Texas  

Drought intensity is classified into 5 categories: D0 (percentile < 30%), D1 (percentile < 20%), D2 (percentile < 
10%), D3(percentile < 5%), D4 (percentile < 2%) 



Decision theory model for an economic 
assessment of the SMAP OSSE 

A simple approach:   

C – cost of taking action to mitigate event (e.g. drought) regardless of whether event happens 
or not 

L – loss if event happens and no-mitigation was taken. We assume C/L < 1 

p – probability of the event as assessed by the ensemble 

 

Statistical decision theory has lots of say about making OSSEs relevant. E.g. : “Commercial 
decisions are often made, not on the basis of events which are likely to occur, but on the basis of 
events that are unlikely to occur, but which if they occur, would involve serious financial loss 
(Palmer, 2002)” 

Mitigate at 

cost C

Don't mitigate at 

Cost 0 

Event happens, incurring zero loss

Event doesn't happen

Event happens, incurring loss L

Event doesn't happen

C

C

L

0

p

(1-p)

p

(1-p)

Mitigate 
if C < pL 

Or  

P > C/L 

The total cost is computed by summing 
across the cost/loss incurred for each 
flood/drought event 

The costs can be computed both from a 
“deterministic” approach that uses the 
ensemble mean values in the decision tree 
or a “probabilistic” approach that 
diagnoses the probability of the event 
from the ensemble 



Sequence of decision theory analysis in the 
SMAP OSSE  

Truth run (Mosaic) 
LVT 

Open loop run 
(Noah) 

DA run (Noah) 

Drought/Flood risk 
assessments based on 
root zone soil moisture 

percentiles 

Cost-Loss 
Model 

Cost_OL 

Cost_DA 

Value of Information (VOI) 
= Cost_OL/Cost_DA  



Value of information from decision theory model 

The contribution to the value of information metric for low C/L ratios are from the improving the probability of 
detection of drought events through DA and for high C/L ratios are from reducing the false alarm ratio of drought 
events in the open loop run  

The gain from DA compared to OL is at least about 10% of cost reduction – fully attributed to the L-band 
measurements.  

Drought Flood Risk 



  

The assimilation of remotely sensed soil moisture show promise 
for improving drought estimation at short time scales in the 
NLDAS system.  

The NLDAS system produces high quality soil moisture products 
without data assimilation (due to the high quality forcing inputs). 
Therefore the added value provided by the remotely sensed soil 
moisture products is significant.  

The L-band measurements from SMAP is expected to provide 
greater enhancements in model assimilated products.  

Summary 


